

Infusions as dosage forms

Institute of Pharmaceutical Technology and Biopharmacy

Outline of the lecture

- Definition of infusions
 - requirements
 - examinations
- Therapeutic classification
 - classification

(Total Parenteral Nutrition (TPN), Cytostatic preparations, requirements of preparation, documentation and application)

Basic preparations

Infusions (Ph.Hg.VIII.)

Requirements:

Sterile, water based <u>solutions</u> or <u>o/w emulsions</u> *Emulsions: phase separation is not allowed*

Usually: <u>isotonic property</u> Applied <u>in large volume</u>

Infusions do not contain any added microbial preservative.

- Concentrated solutions for injections or infusions
 - Sterile solutions, dilutable
- Powders for injections or infusions
 - Applied after dissolution or suspension
 - It may be freeze-dried products

Differences between infusions and injections

Aspects	Injections	Infusions
purpose	parenteral drug application	water and ions replacement, parenteral nutrition, praenteral drug therapy
equipment	syringe with needle	infusion bags, cannulas
applyed amount	Max. 20-50 ml	measured in liters
application time	Max. 15-20 min.	more hours
solvent	water, ethanole, glicerol, propylenglicole, oils, etyl-oleate	water
Isohydration	not required	required
Isotonicitation	not required	required
Isoionisation	-	recommended
Colloid osmotic pressure	-	recommended by plasma replacements
container	ampoula	infusion bags
Pyrogens	not required	required
Physico-chemical properties	it may be a suspension	solution or o/w emulsion
application area	anywhere	subcutaneuous

Infusions: sterile liquids:

stability

particle free

- solution
- colloidal solution
- emulsion
- powders, that are dissolved before use

isoionic property

Advantages of parenteral route

- 1. Rapid action
- 2. The *inactivation effect* of gastrointestinal tract is not present
- 3. No absorption problems
- 4. The drug *plasma level is more controllable* than other cases
 There is no need for patient cooperation.
 (*baby, unconscious, vomiting, diarrhea*)
- 5. Volume replacement or nutrition is possible
- 6. In specific cases may also be appropriate: local anesthesia, depot effect (with proper dosage form and with proper application)

Disadvantages of parenteral route

- 1. Hazardous (invasive)
- 2. It is not removable (side effect, overdose)
- 3. Expensive therapy (preparation process, examinations, requirements)
- 4. Difficult to use (patient alone vs. qualified person)
- 5. Discomfort, pain at the injection (patient compliance)

Manufacture process and examinations of infusions

- Generally manufactured the same as the injections
 - Differences:
 - Concentration of any substance has to be given in mmol/l (injection mg/l)
 - Most frequently used *glass or plastic containers* to store
 - Large manufacturable amount, therefore the Pharmacopoeias give a unit (1000 ml)
- Examinations
 - Same as injections
 - Sterile, uninjured (intact) with perfect closure
 - At most 3% of API can be the difference between the declared and real

Therapeutic classification of infusions

- 1. Liquid- and electrolyte-therapy
- 2. Blood- and volume replacement, volume expanders
- 3. Infusion mixtures
 - a) i.v. additives
 - b) Cytostatics
 - c) Total Parenteral Nutrition (TPN)
- 4. Solutions for osmotherapy
- 5. Solutions for dialysis

1. Liquid- and electrolyte-therapy

1. Liquid- and electrolyte-therapy

Infusio glucosi Ph. Hg. VII.

Glucosum anhydricum50,00 gAcidum chloratum5,00 gAqua ad iniectabiliaad 1000,0 ml (ad 1020 g)

1. Liquid- and electrolyte-therapy

They do **not contain** "**physiological free water**", because the ions are in dissociated form in the solution.

Application: isotonic dehydration (great loss of gastrointestinal secretion, case of burning...) Infusio salina Ph. Hg. VII.

Kalium chloratum0,30 gCalcium chloratum (CaCl2·6H2O)0,50 gNatrium chloratum8,60 gAqua ad iniectabiliaad 1000,0 ml (ad 1004,0 g)

Infusio glucosi salina Ph. Hg. VII.

Kalium chloratum	0,15 g
Calcium chloratum (CaCl ₂ ·6H ₂ O)	0,25 g
Natrium chloratum	4,30 g
Glucosum anhydricum	25,00 g
Acidum chloratum 0,1n	5,00 g
Aqua ad iniectabilia ad 1000,0 ml (a	d 1010,0 g)

1. Liquid- and electrolyte-therapy

1. Liquid- and electrolyte-therapy

Loss of acid: \rightarrow Cl⁻ intake is required

Loss of alkaline: \rightarrow total electrolytes replacement + NaHCO₃

Infusio natrii lactici Ph. Hg. VII.

Natrium lacticum solutum 20% pro infusione86,00 gAqua ad iniectabiliaad 1000,0 ml (ad 1005 g)

Infusio natrii lactici cum kalio Ph. Hg. VII.

Kalium chloratum		3,80 g
Natrium lacticum solutum 20	% pro infusione	56,00 g
Aqua ad iniectabilia	ad 1000,0 ml	(ad 1005 g)

Infusio natrii lactici salina Ph. Hg. VII.

Kalium chloratum		0,30 g
Calcium chloratum		0,50 g
Natrium chloratum		6,00 g
Natrium lacticum solutum 20% pro infusione		24,00 g
Aqua ad iniectabilia	ad 1000,0 ml (ad 1005 g)

1. Liquid- and electrolyte-therapy

1.4. balancing solution (basic solution)

water + 30-50% electrolites of the physiologic amount + carbohydrates

It is applied before the application of TPN.

2. Blood- and volume replacement, volume expanders

2. Blood- and volume replacement, volume expanders

1. natural "body's own" volume replacements

Holosanguis humanus conservatus (preserved			
total human blood)			
Preservation: ACD	21 days		
CPD	28 days		
Storage: +4 °C (±2°C)			

Solutio anticoagulans "ACD"

Acidum citricum $(C_6H_8O_7H_2O)$ Trinatrium citricum $(C_6H_5Na_3O_7H_2O)$ Glucosum anhydricum Aqua ad iniectabilia

ad

5,10 g (24,30 mmol/l) 20,0 g (68,0 mmol/l) 27,0 g (149,86 mmol/l) 1000,0 ml (=1023 g)

Solutio anticoagulans "CPD"

Trinatrium citricum $(C_6H_5Na_3O_72H_2O)$ 26,30 g (89,42 mmol/l)Acidum citricum $(C_6H_8O_7H_2O)$ 3,27 g (15,56 mmol/l)Glucosum anhydricum34,47 g (191,32 mmol/l)Natrium dihydrogenphosphoricum $(NaH_2PO_42H_2O)$ 2,22 g (14,23 mmol/l)Aqua ad iniectabiliaad1000,0 ml

2. Blood- and volume replacement, volume expanders

Requirements:

- The colloidal substances should be suitable for volume replacement
- <u>Water binding</u> capability (such as: blood plasma proteins)
- <u>Same osmotic pressure</u> as blood
- The <u>rheological properties</u> of the preparations may be equal to the blood.
- Should <u>not accumulate</u> in the body (liver, kidney)
- The solutions must not be toxic, not contain pyrogens, not cause allergy.
- Constant <u>chemical composition</u>
- Do not affect the <u>coagulation process</u>
- Remain fluent in a large temperature range

2. <u>Blood- and volume replacement</u>,

volume expanders

2. Artificial

Solution of the macromolecules.

- **40 000- 450 000 Dalton** (1 u \approx 1,6605402 · 10⁻²⁷ kg $^{1/}_{12}$ C¹²)
- Because of their molecular size is larger than the pores of the healthy (intact) blood vessel they remain intravascular with their osmotically bound water too.
- Because they are macromolecules:
 - Slowly eliminated
 - May have allergic effect (anaphylaxis)
- Indication : volume replacement (without the administration of other person's blood)
- The **volume expanders:** it is hyperosmotic solution, that can be eliminate the water from the interstitial area \rightarrow decreasing edema

2. Blood- and volume replacement, a. Albumine volume expanders

•Physiological protein, normal value 34-47 g/l, produced by the liver

•575 amino acid \rightarrow 65 000 dalton, it responsible for 85% of the colloid osmotic pressure.

•transport function: fatty acids, bilirubin, Ca⁺, steroid hormons, vitamins, medications.

Binding oxygen free radicals → antioxidant effect.

5% solution: acute volume replacement
20-25% solution: volume expander, if the synthetic colloids are contraindicated.

- pregnant, breastfeeding mother, infant
- if the albumin concentration is < 25-30 g/l
- for burning lesions

Application

therapeutic plasma replacement

2. Blood- and volume replacement, volume expanders

b. Gelatine

1. It is a mixture: Purified protein obtained either by partial acid hydrolysis (type A), partial alkaline hydrolysis (type B) or enzymatic hydrolysis of collagen from animals (including fish and poultry).

2. 35 000 dalton.

- 3. It may cause allergy (anaphylaxis)
- Its colloid osmotic pressure equals with blood → it is not suitable as volume expander
- It eliminates rapidly from the circulation system (less than 50 000 Da→kidney) Does not cause kidney damages.
- 6. Accumulation does not occur
- 7. Duration: 1-2 hour(s).
- 8. Decrease the blood viscosity, antithrombotic effect.

Gelofusine, Gelifundol (3-5% gelatin + electrolites)

2. Blood- and volume replacement, volume expanders

- 1. Glycogen-like, mixture of polysaccharides, principally of the α -1,6-glucan type.
- 2. It is produced by fermentation (*Leuconostoc mesenteroides*), than fractionized, \rightarrow average molecular mass: 40 000, 60 000 Dalton.
- 3. The volume increasing capacity (180-200%), is increasing with:
 - Increasing of the concentration,
 - Reduction of the molecular mass,
 - Increasing of water binding capability per gram.
- 4. Duration of action:
 - Excretion: through the kidney if the molecule is less than 50 000 Da
 - Metabolisms: enzymatic degradation (kidney, liver, spleen)
- 5. Duration of action: 3-4 hours
- 6. Haemodilution \rightarrow decreasing of viscosity \rightarrow improvement of circulation

2. Blood- and volume replacement, volume expanders

- 7. The dextrin can alter the coagulation parameters:
 - The macromolecules can coat the thrombocytes/ platlet \rightarrow decreasing of aggregation
 - Fibrins and clots can be dissolved easier.
- 8. Disturb the blood group determination
- 9. Increasing the viscosity of urine \rightarrow damage the renal tubules prevention
- 10. Allergy, anaphylaxis : therefore: PROMIT inj. (1000 Dalton)

Macrodex 6% + NaCl Macrodex 6% + glucose 60-70 kD replacement Rheomacrodex 10% + NaCl Rheomacrodex 10% + glucose 40 kD, plasmaexpanders

2. Blood- and volume replacement, volume expanders

d. Hydroxyethyl starch (HES)

- 1. Preparation: hydrolyzed corn starch
 - Molecular mass: 450 000, 200 000, 40 000 Da

Substitution of glucose molecule (on C_2 or C_6) with hydroxyethyl groups \rightarrow water solubility increases, results in slower degradation by serum amylase.

Substitution index= substituted /non substituted (0.5, 0.62, 0.7)

The duration of the action depends on:

- a./ molecular mass
- **b./ substitution index**

c./ C_2/C_6 ratio

2. Blood- and volume replacement, volume expanders

d. Hydroxyethyl starch (HES)

- 2. Elimination: mainly kidney,
- 3. Accumulate: hepatocytes, glands, spleen, renal tubular cells, skin
 - \rightarrow Contraindicated in renal insufficiency!
- 4. Rarely allergy
- 5. Delaying effect to coagulation > 450 000 Da

The absence of circulating blood volume	Colloids	Blood
<25 %	1	0
25-50 %	1	1
>50%	1	2

1. Intravenous additives: preparations, that are diluted with solvents and administered parenterally as infusions

- 1. Individual drug preparations
- 2. Ensure the compatibility:
 - <u>Compatible with infusion</u>,
 - Simple
 - Miscible
 - pH compatible (equal to the administered preparation)
- 3. Aseptic formulation
- **4. Stability, storage** (room temperature, cool place, protected from light...).
- 5. Labelling and documentation

2. Cytostatics

2. Cytostatics

Personal conditions

job specifications:

qualified: specialist, who knows the risks what can increase the destructiveness of health

Healthy:

reproductive-aged women's consent!

Must not be employed:: young, pregnant, breast-feeding women

Contraindicated (diseases): CNS, liver, heart, lung, kidney, hematopoietic (blood-forming), endocrine or immunology

Monitoring of the workers:

- **beginning** \rightarrow qualification (suitability),
- **periodic** \rightarrow annually,

extraordinary \rightarrow complaint, symptom, after contamination

final examination → retire or withdraw

2. Cytostatics

Compounding and dispensing

- 1. Aseptic work area:
 - equipment, room, person, substance
- 2. Hygienic hand disinfection, protective clothing :
 - steril coat with tight cuff
 - special steril latex gloves (single used)
 - Protective cap, face mask (single used)
- 3. Equipments (steril, single used):
 - Syringe, needle, absorbent tissues
- 4. Waste disposal:
 - separated from the others, with a different mark

2. Cytostatics

Constructional safety regulations:

- 1. Protective equipment and protective clothing
- 2. Checking of Cytoflow 915

direction of air flow, microfilters, differences of pressure (manometer)

- 3. Microbiology: room and the cytoflow
- 4. Exposition: (Hungary) max 6 hours per day (6 hours contact with the cytostatic active ingredients, documentation is an other thing) [6/1981.(VII.24.) regulation].
- 5. Contamination

Decontamination \rightarrow rinse with a neutralizing solution, removal of contaminated cloths Record book \rightarrow substance, person, applied protocol.

2. Cytostatics

Documentation:

1. Patient data:

name, birth date, body height, body weight, body surface area (BSA), disease

2. Medication data:

doctor's name, protocol, which treatment in the cycle

3. Preparation composition data:

active ingredient, name of drug, amount of the drug, batch number, storage, expiry date, name of the Galenic infusion, its amount, its batch number, its expiry date
2. Cytostatics

Documentation:

4. Preparation data:

S.No., date (year, month, day, hour), name of the pharmacist

5. Storage date:

temperature, Is it necessary to protect the preparation from light?

6. Labelling:

primary colored- Background colored, (patient name, bed number; name of cytostatic medicine, amount; storage temperature, protection from light; expiry date; batch number)

2. Cytostatics

Administration

separated hospital room (ward).

tight cuff sterile coat with sterile latex gloves

(injection or infusion)

sterile latex gloves (at dispensing tablets contaning cytostatics)

2. Cytostatics

Administration

Patient's direct environment should be protected with

rubber- or plastic bed-sheet.

If decontamination is happened

5% Hypo must be applied for 24 hours

2. Cytostatics

Administration

- Every equipment (and sputum, stool...), what are any contact with the patient, must be single used.
- Have to be handled as hazardous waste!

3. Infusion mixtures 3. TPN

3. Total Parenteral Nutrition

- 1. Sterility, pyrogens (!)
- 2. The nutrients are contained in the form of monomers.
- 3. I.v. administration is possible
- 4. Include all the necessary nutrients.
- 5. The ratio of nutrients meet with the patient's need.
- 6. Stabile (chemical, microbial)

Causes of application of parenteral nutrition

- If enteral/peroral nutrition giving is not possible (1 week) (polytrauma)
- The patient cannot eat (GI obstruction, malabsorption)
- The patient must not eat (operation, inflammatory bowel syndrome, pancreatitis)
- The patient does not want to eat (nausea, loss of appetite)

Nutritions

1. Energy sources 1.1. Carbohydrate glucose Daily need:150 g - 350 g (2 g - 5 g / kg of body mass / day) **Fructose** Invertose Sorbitol

1.2. Fats

2. Nitrogen sources

Aminoacids

Daily needs: 60 g -140 g (0,8 g - 2,0 g / kg / day) At the same time: calorie intake! 1g non-proteins N needs 100-150 kcal Amino acid composition : Nutriment (food preparation) special amino acid composition kidney disorder

3.1. minerals

3. micro-nutritions

3.2. Vitamines

3. micro-nutritions

3.3. trace elements

The nutrition

If it possible: enteral nutrition (EN) is used!

The nutrition

1. Parenteral:

peripheral or central

1.1. fractional-parenteral nutrition

AA + G + FA

1.2. Total parenteral nutrition (TPN)

AA + G + FA + V + TE

AA=amino acids G=glucose V=vitamines FA=fatty acids TE=trace elements

Parenteral nutriments:

1. One component systems

1.1. aminoacids: Vamin 14, Aminosteril KE, Pedamin, Aminoven 15%

1.2. carbohydrate: Glucosum 20%, Glucosum 40%

1.3. fats: Intralipid 10% és 20%, Lipovenös 10% PLR, Lipofundin MCT

Parenteral nutriments:

2. Incomplete mixtures:

Aminomix 1, 2, 3, Nutriflex peri, basal, plus, special

3. Complete mixtures:

Clinomel N4, N5, N6, N7, Kabiven, Kabiven peripheral "All in one"

Parenteral nutriment-supplements:

1. Vitamins

Soluvit, Vitalipid N infant, Vitalipid N adult Cernevit

2. Trace elements:

3. Glutamine:

Addamel N, Tracutil, Tracitrans

<image>

Dipeptiven

Preparation of TPNs

Preparation of TPNs

4. Osmotherapy

They are applied as osmotic parenteral diuretics to decrease edemas.

- 1. Osmotically active ingredients
- 2. If it is possible: elimination trough the kidney in same form
- 3. Water soluble
- 4. Easy to prepare and sterile
- 5. It not cause tissue damage or laboratory abnormalities

The "washing liquid" of the hemodialysis must have the same quality as infusions.

	mmol/l						
	Na⁺	K+	Ca ²⁺	Mg ²⁺	Cl-	Lactate ⁻	Glucose
Peridisol 1-D	140	-	2	0,75	102	43,5	83
Peridisol 1- DK	140	4	2	0,75	106	43,5	83
Peridisol 2-D	140	-	2	0,75	102	43,5	389
CAPD 2	134	-	1,75	0,5	103,5	35	83
Dianeal PD1	132	-	1,75	0,75	102	35	75

Examples

Solutio pro dialysi peritoneale I.	<u>Ph. Hg.VII.</u>		
Magnesium chloratum (MgCl ₂ ·6H ₂ O)	0,152 g		
Calcium chloratum (CaCl ₂ ·6H ₂ O)	0,438 g		
Natrium chloratum	5,64 g		
Natrium lacticum solutum 20% pro infusion	24,50 g		
Glucosum anhydricum	13,50 g		
Aqua ad iniectabilia	ad	1000,0 ml	
Colutio pro dioluci poritopoolo II			
<u>Solutio pro dialysi peritoneale II.</u>	<u>Ph. Hg. VII.</u>		
Magnesium chloratum (MgCl ₂ ·6H ₂ O)	<u>Pn. Hg. VII.</u>	0,152 g	
	<u>Pn. Hg. VII.</u>	0,152 g 0,438 g	
Magnesium chloratum (MgCl ₂ ·6H ₂ O)	<u>Pn. Hg. VII.</u>	<i>,</i> ,	
Magnesium chloratum (MgCl ₂ ·6H ₂ O) Calcium chloratum (CaCl ₂ ·6H ₂ O)	<u>Pn. Hg. VII.</u>	0,438 g	
Magnesium chloratum (MgCl ₂ ·6H ₂ O) Calcium chloratum (CaCl ₂ ·6H ₂ O) Kalium chloratum (KCl)		0,438 g 0,298 g	
Magnesium chloratum (MgCl ₂ ·6H ₂ O) Calcium chloratum (CaCl ₂ ·6H ₂ O) Kalium chloratum (KCl) Natrium chloratum (NaCl)		0,438 g 0,298 g 5,64 g	

Hepatoprotective infusions

Infusio glutaspari

L – Acidum asparaginicum		5,00 g
Magnesium oxydatum		0,20 g
Kalium carbonicum		1,00 g
L – Acidum glutaminicum		5,00 g
Natrium hydrocarbonicum		4,00 g
Natrium chloratum		2,25 g
Sorbitum		25,00 g
Aqua ad iniectabilia	ad	500,00 ml

Cardiostop I.

Natrium chloratum	0,877 g	
Kalium chloratum	0,745 g	
Magnesium chloratum solutum	0,608 g	
Glucosum anhydricum		3,00 g
Mannitum		41,31 g
Aqua ad iniectabilia	ad	1000,0 ml

Therapeutic classification of infusions

- 1. Liquid- and electrolyte-therapy
- 2. Blood- and volume replacement, volume expanders
- 3. Infusion mixtures
 - a) I.v. additives
 - b) Cytostatics
 - c) Total Parenteral Nutrition (TPN)
- 4. Solutions for osmotherapy
- 5. Solutions for dialysis

Thank you for your attention!

